Customer loyalty is a strategic priority for
organisations. We did some work with one of our industrial partners to build a
data-driven method to better assess and predict customer loyalty. Organisations
still use single-question customer metrics, such as the Net Promoter Score
(NPS), which is popular despite recent studies arguing that customer loyalty is
multidimensional, and therefore firms require to combine behavioural and
attitudinal data sources. One of
the reasons why organisations rely on NPS is the simplicity to administer
measuring customer loyalty. However, the picture now gets complicated because
customers interact with firms that are leveraging new technologies such as
mobile applications, social media platforms, virtual reality, drones and the
Internet of Things to provide smart services and enable a seamless customer
experience. The complexity of using these technologies within an organisation’s
myriad touchpoints has led to a data explosion across touchpoints in the entire
customer journey. Thus, it is more difficult to rely on single metrics like the
NPS. In the Cambridge Service Alliance, we investigated this area and built a novel customer loyalty analytics method that demonstrates an
approach to utilising data more effectively to assess and predict customer
loyalty in complex business-to-business (B2B) service organisations.
To acquire a holistic view of customer
loyalty, we integrated data across multiple systems. The data was classified
into three categories: attitudinal, behavioural and demographics. The
attitudinal data was collected from the customer survey, which includes
structured (NPS rating) and unstructured data (verbatim comments). The behavioural
data was collected from the financial system. This data consists of sales (new,
used, lease), product support (parts and service transaction types) and
customer service agreement (CSA) transactions (parts and service transaction
types). Two groups of customers were identified: those who have a maintenance
contract with the company, referred to as Customer Service Agreement (CSA)
customers; and those who deal in a transactional setting, referred to as
Product Support (PS) customers. Demographic data, which contains the regional
locations of customers, was included. In total, we collected 1,044,512
transaction records over a three-year period.
Our predictive model used:
- RFM to transform customer transactional data into profitability scores, facilitating the categorisation of customers based on their purchasing behaviour
- The K-means clustering model technique to segment data points into groups, each containing data points similar to one another and dissimilar to data points in other groups. In our work, we divided customers into 11 groups based on their RFM scores. This was accomplished using the K-means segmentation algorithm
- Active Customers Predictive-We have identified active customers who had not churned and had company dealings in the form of transactions
- Demographic- we used the geographical location of customers, which appears within a transaction record.
- Text-mining Model- We developed a linguistic-based text-mining model to analyse the open-ended customer comments in the survey. A sentiment score for each comment was then calculated.
Our model shows how firms can compare NPS
scores with repurchasing behaviour as a loyalty assessor, using predictive
variables such as the RFM model, demographics, active customers and textual
customer complaints, while the most popular performance measure, the NPS,
completely disregards this. Clearly, customer loyalty measurement requires
holistic loyalty-tracking initiatives. Based on the amalgamation of data
sources, the actual underlying customer loyalty can be fully assessed and
interpreted through the use of big data analytics. Furthermore, our model has
the predictive ability to determine whether customers are likely to churn,
thereby increasing the model’s functionality. Over the three years, if the
organisation used NPS as an indicator for customer loyalty, over half of the
customers were considered to be completely satisfied. However, using our
analysis, we identified many misclassified NPS categories, which has misled the
company. For example, in 2013 and 2014 we found that approximately 500
customers were considered to be detractors
when they were classified as promoters according
to the NPS classification. Thus, NPS alone is not sufficiently accurate for
organisations. If organisations want to understand why their customers churn,
the answer could come from the verbatim comments provided in survey data or
social media. Our text-mining model enables us to analyse the root causes of
customer complaints, which, expressed in these free verbatim comments, uncover
potentially vulnerable customers that NPS would have considered loyal and not
requiring intervention strategies.
No comments:
Post a Comment